Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design
نویسندگان
چکیده
Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
منابع مشابه
Chloride‐Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium–Sulfur Batteries
Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vap...
متن کاملA sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries
Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent me...
متن کاملUnderstanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li−S Battery
The possibility of achieving high-energy, long-life storage batteries has tremendous scientific and technological significance. A prime example is the Li−S cell, which can offer a 3−5-fold increase in energy density compared with conventional Liion cells, at lower cost. Despite significant recent advances, there are challenges to its wide-scale implementation. Upon sulfur reduction, intermediat...
متن کاملImproving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure
Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...
متن کاملCatalytic Effects in Lithium–Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect
Lithium-sulfur (Li-S) battery has emerged as one of the most promising next-generation energy-storage systems. However, the shuttle effect greatly reduces the battery cycle life and sulfur utilization, which is great deterrent to its practical use. This paper reviews the tremendous efforts that are made to find a remedy for this problem, mostly through physical or chemical confinement of the li...
متن کامل